US ERA ARCHIVE DOCUMENT

Effects of Exposure Dynamics in Dose Response Relationships

Joint USEPA and DHS Conference on Microbial Risk Assessment April 9, 2008

Joseph Eisenberg, James Koopman, Josep Serra University of Michigan

Towards a Physiologically-Based Dose – Response Model

Rationale

- Low dose extrapolation
 - Empirical data only exists in high-doses
- Understanding dominant modes of transmission
 - Optimal intervention strategies depend on which modes transmission are dominant
 - E.g., face mask vs. decontamination for influenza control

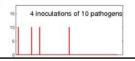
Dose Response: The Exponential Model

Biological rationale

- Single hit model
 - · Any pathogen has some probability of infection
 - Each pathogen acts independently
 - These assumptions lead us to the exponential model for risk

$$1 - e^{-\hat{r}D}$$

- Risk depends on dose and r, the per pathogen risk
- Does risk depend on time between inoculations?



Biological Issues with Time- Independence

- Time independence
 - Implies immune system plays no role in controlling infection
- Immune system operates at time-scales ranging from minutes to weeks
- Time-scale of environmental contamination to exposure can be minutes to hours
 - The innate immune system is active at this time scale

Physiologically-based Dose Response Behavior

$$F(\{d_{t_0+i\Delta t}\}_{i=0}^n)$$

Assumption 1:

Inoculations occur over short time period. Means doses can be summed

$$F(\lbrace d_{t_0+i\Delta t}\rbrace_{i=0}^n) = F(\sum_{t=0}^n d_{t_0+i\Delta t}) \text{ when } \Delta t \to 0$$

Assumption 2:

Inoculations occur over very long time period. Means risks from each slation are independent $\it n$

 $F(\{d_{t_0+i\Delta t}\}_{i=0}^n) = 1 - \prod_{i=0}^n (1 - F(d_{t_0+i\Delta t})) \text{ when } \Delta t \to \infty$

Assumption 3:

Inoculations occur over intermediate time periods. Means risk should decrease for longer exposure periods

$$F(\{d_{t_0+i\Delta t_i}\}_{i=0}^n) < F(\{d_{t_0+i\Delta t_j}\}_{i=0}^n) \text{ when } \Delta t_i > \Delta t_j$$

Cumulative Dose Model

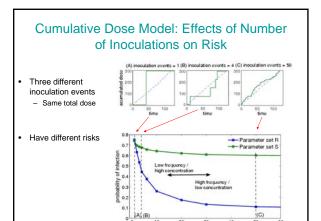
- Continuous time Markov chain model can capture the needed dynamics
 - Dose has less probability of infection if the time of inoculation is longer
 - Time-dependent dose-response experiments are needed to inform the dynamics of this dose response relationship

System state variables and parameters P # of pathogens I # of immune particles

The particular of the particles \mathbf{Model} description \mathbf{Model} description \mathbf{D} total dose \mathbf{D} total dose \mathbf{D} total incollation time $\mathbf{C}_p = \mathbf{D}/\mathbf{T}$ for t<T and 0 for \mathbf{D}/\mathbf{T} printrinsic growth rate of pathogens \mathbf{C}_p describution rate of pathogens \mathbf{C}_p a carrival rate of immune particles \mathbf{C}_p natural death rate of immune particles \mathbf{C}_p natural death rate of immune particles \mathbf{C}_p describation rate of immu

Cumulative Dose Model: Dynamics Slow immune replenishment $(\alpha=0.001)$: Dose-response function is independent of dosing time periods Fast immune replenishment $(\alpha=0.1)$: Shorter dosing regimes shifts dose-response

Blue to red transition represents longer/lower concentration dosing periods



Conclusions

- Physiologically based dynamic dose-response models
 - Incorporate an important time dependent property of infection dynamics
 - The risk of one hundred pathogens at once is higher than the risk of one pathogen every day for one hundred days
- What impact do these dynamics have on transmission systems models and the design of interventions?
 - Integration to a transmission model is computationally infeasible
 - Need a simpler model

function to left (increased infectivity)

Simple Cumulative Dose Model

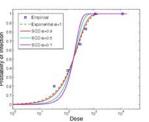
- D represents inoculated pathogens that are accumulated within the host
- Pathogen immune system interaction
 - Pathogens are removed due to the action of the immune system
- The effectiveness of the immune system decreases as the number of pathogens increase
- $\bullet \quad \alpha \mbox{ governs the time dependence between inoculations}$
 - α = 1 is the time independent, exponential condition
- $\quad \alpha$ < 1 is the time dependent condition
- Expect life-time of a pathogen is (*n* is the number of initial pathogens)

$$n^{\alpha} \gamma^{-1}$$

Simple Cumulative Dose Model: Single Inoculation

Single inoculation case.

$$P_{inf}(D) = 1 - e^{-s \int_0^{T_e} D(t) dt}$$



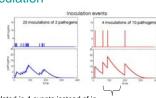
Where

- T_e the time to extinction of pathogens, is a function of the immune system (a,γ) and pathogen (r)
- \mathbf{s} , the risk associated to a single pathogen that persists over time, is function of the immune system (α, γ) and pathogen (r)

Simple Cumulative Dose Model: Multiple Inoculation

Multiple inoculation case

$$P_{inf}(D) = 1 - e^{-s \int_0^\infty D_m(t) dt}$$



The same total dose of pathogens inoculated in 4 events instead of in 20 events persist longer, and therefore, give a higher risk of infection

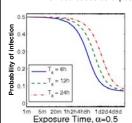
Total dose is the sum of each inoculation

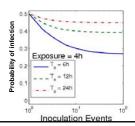
Dose from each inoculation is a function of the prior dose

$$\int\limits_0^\infty D_m(t)dt = \sum\limits_{i=1}^{n-1} \left[\int\limits_0^{t_{i+1}-t_i} D(t,D(t_i)+d_i)dt\right] + \int\limits_0^\infty D(t,D(t_n)+d_n)dt$$

Simple Cumulative Dose Model: Qualitative Behavior

- This simple cumulative dose model exhibits similar behavior as the more complex pathogen-immune interaction model
 - Risk decreases as exposure time or inoculation events increase





Incorporating Dynamic Dose-Response Functionality in a Transmission Model

The classical SIR model does not take into account environment

$$\frac{dS}{dt} = -\beta SI$$

$$\frac{dS}{dt} = -Sf(E)$$

$$\frac{dE}{dt} = g(I)$$

• To model environmental exposure a dose-response function, **f**, is required to determine infectivity

Incorporating Dynamic Dose-Response Functionality into a Transmission Model

- If immune system impacts the risk of infection
 - The probability of becoming infected is calculated as a function of the current level of pathogen within the host.
 - The number of pathogens in individual i residing in cell j evolves as a function of fomite pickup, $\mathbf{C}_{\mathbf{f}j}$ airborne pickup, $\mathbf{C}_{\mathbf{a}j}$ and die off within host

$$D_i \left\{ \begin{array}{l} + \ pickup \ C_{t,j} \ \ \text{at self-inoculation rate} \\ + \ pickup \ C_{a,j} \ \ \text{at breathing rate} \\ -1 \ \text{at a rate } \gamma D_i^a \end{array} \right.$$

- The per capita force of infection at every dt is a function of pathogen infectivity, r, and immune system dynamics, α, γ
 - f(E) from previous slide becomes

$$\hat{r}\gamma(2-\alpha)\left(\frac{\log(\frac{1}{2})}{-\hat{r}}\right)^{\alpha-1}D_idt$$

Incorporating Dynamic Dose-Response Functionality into a Transmission Model

- How do the dose response dynamics impact fomite vs. airborne transmission?
- · Simulation scenario (assumptions)
 - Same TCID₅₀ for fomite and airborne
 - Contamination is constant
 - Same dose received via fomite and air
 - These assumptions are all wrong, but allows us to compare the relative impacts of fomite and airborne routes of transmission

Risk	α=1 TCID ₅₀ =3.2	α=0.5, T _e =12h ID ₅₀ =64	α=0.1, T _e =12h, ID ₅₀ =64	α=0.1, T _e =12h, ID ₅₀ =640	α=0.1, T _e =12h, ID ₅₀ =6400
R _{total}	0.2	0.1	0.03	0.04	0.04
R _{fomite}	0.11	0.05	0.02	0.03	0.03
R _{air}	0.11	0.02	0.003	0.0005	0.0001
R _{fomite} / R _{air}	1.0	2.0	7.6	52	366

Conclusions

- Dynamic dose-response models can capture the immune system impact on infection
 - The crucial issue is the time course of exposure
 - The risk of exposure of one hundred pathogens at once is not same as the risk of exposure of one pathogen every day for one hundred days
- Implications
 - Risk of infections are more accurately captured
 - Immune system serves to attenuate the impact of low-level longer term exposure
 - Since temporal patterns of exposure differ by route of transmission, the dose response relationship can impact intervention strategies
 - Fomite exposure has fewer but higher magnitude inoculation events
 - Airborne exposure has more but lower magnitude inoculation events